
Workshop – Analog Computing

Bernd Ulmann

19-APR-2006

Commercial use prohibited.

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 1

Structure of this workshop

The following slides are part of the workshop ”Analog Computing” which was held at

the VCFE-2006 in Munich.

This workshop gives an introduction to the art of analog computing by outlining

some examples ranging from a mass-spring-damper system to a bouncing ball in a

box.

All examples have been programmed and executed on real analog computers like

the Telefunken RA742, etc.

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 2

Simulating a mass-spring-damper system

The first example shows how to simulate the behaviour of a rather simple

mechanical system consisting of a mass, a spring and a damper. The basic

elements of this system are shown below with the mathematical representation of

the forces belonging to each:

Fd = dẏ

.....................��HH��HH��.....................

Fm = ma = mÿ Fs = sy

&%
'$

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 3

Putting all elements together

Connecting these three elements together yields (thanks to nature and Newton) the

following setup and equations:

mÿ + dẏ + sy = 0

.....................��HH��HH��.....................
Fm + Fd + Fs = 0

��
��

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 4

Rearranging the equation

To solve the equation

mÿ + dẏ + sy = 0

on an analog computer it is rearranged in a way that yields the highest derivative of

y on the left hand side:

ÿ = −
1

m
(dẏ + sy) .

For setting up the computer assume that ÿ is known and generate the remaining

terms incorporating lower derivatives of y by successive integration, multiplication

and summing of terms.

Note that each summer and each integrator will change the sign!

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 5

Generating −ẏ

Assuming that ÿ is known, its next lower derivative, −ẏ, can be generated by using

an integrator. The initial condition input of this integrator is used to set the initial

value ẏ0 as shown in the picture below:

ÿ @@
��

ẏ0

−ẏ

n

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 6

Generating Fs = sy

In the following step the force Fs exerted by the spring will be generated:

−y0
n

n@@
��

@@
��

ẏ0

−ẏÿ
s

y

n

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 7

Generating Fd and the sum of forces

The force generated by the damper, Fd, can be generated accordingly using the

already knwon value −ẏ. The setup shown below then creates the sum of Fs and

Fd with a negative sign:

− (dẏ + sy)

n
n
n

@@
��

@@
��

@@
��

@@
��

ẏ0

ÿ
s

y

−y0

−ẏ

ẏ d

n

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 8

Closing the loop

The sum − (Fs + Fd) can now be multiplied by the constant 1

m
yielding ÿ which is

exactly what we expected at the input of the circuit. So closing the loop will result in

a computer setup solving the initial differential equation readily:

− 1

m
(dẏ + sy)

n
n
n

n

@@
��

@@
��

@@
��

@@
��

ẏ0

ÿ
s

y

−y0

−ẏ

ẏ d

− (dẏ + sy)

1

m

n

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 9

Setting up the computer

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 10

Simulation run with s = 0.2 and d = 0.8

Here and in the following m = 1 is assumed.

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 11

Simulation run with s = 0.4 and d = 0.8

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 12

Simulation run with s = 0.6 and d = 0.8

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 13

Simulation run with s = 0.8 and d = 0.6

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 14

Simulation run with s = 0.8 and d = 1

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 15

Solving two coupled differential equations

The following example is more complicated than the simple mass-spring-damper

system shown before. The goal is to simulate the changes in population numbers in

a two species ecosystem populated by rabbits r and lynxes l. Such a system is

readily described by Volterra’s differential equations:

ṙ = α1r − α2rl

l̇ = −β1l + β2rl

The parameters are as follows:

α1 Rabbit birth rate

α2 Rate of Rabbits killed by lynxes

β1 Lynx mortality rate

β2 Lynx population growth due to killed rabbits

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 16

Partial circuit for ṙ = α1r − α2rl

First of all, let us solve ṙ = α1r − α2rl assuming that there is a value rl already

known. This leads to the following program:

−(−α1r + α2rl) = α1r − α2rl

n
n

@@
��

��
@@
A

AAK

+1

r0

ṙ

α1

α2

rl

−r

n

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 17

Partial circuit for l̇ = −β1l + β2rl

Next, let us solve l̇ = −β1l + β2rl – again under the assumption that there

already exists a term rl:

−β1l + β2rl

n
n

@@
��

��
@@

��
@@

.........
.........
.........
.........
.........
.........
.

O

+1

l0

l̇
−l

rl

β1

β2

β1l − β2rl

n

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 18

Partial circuit for l̇ = −β1l + β2rl

Obviously we can do better and save two summers:

rl

n
n @@

��
−l

β1

l0

+1

β2 n

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 19

Coupling both differential equations

l

l
l

l
l

l

@@
��

��
@@

@@
��

��
@@

...............
.....................................

��@@

��@@
-
-

+1

+1

α1

α2

β1

β2

l0

r0

r

l

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 20

Scaling the equations

Due to the finite range of values which can be processed by an analog computer, it

is necessary to scale the equations to be solved in order to avoid overloading the

operational amplifiers and thus introducing erroneous terms.

Coupled differential equations like the example above are normally quite difficult to

scale since it is challenging to estimate maximum values for the variables.

If a direct scaling is not possible (or if the programmer is too lazy which may be the

case much more often) it is possible to run the calculation with a guessed scaling

and check for overloads. Then use the values at the moment the overload occurred

to determine the next ”guess” and so on.

The values used for the following run were:

α1 = 0.17, α2 = 0.4, β1 = 0.1, β2 = 0.27, r0 = 0.2, l0 = 0.8 (quite

unrealistic number of initial lynxes to be honest).

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 21

The completed program

The following picture shows the program as patched for a Telefunken RA741 analog

computer:

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 22

The overall setup

The next picture shows the overall setup featuring a two channel storage

oscilloscope:

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 23

Running the simulation

The picture below shows the results of the running simulation:

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 24

Simulating a ball in a box

The following example is yet a bit more complicated – the simulation of a ball

bouncing in a box (cf. [1]) as shown below:

0

x

y

1−1

1

−1

(x, y)v

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 25

Overall setup of the simulation

The ball is thrown into the left upper corner of the box with an initial velocity of v0.

Whenever it hits a wall of the box it will be reflected elastically.

The ball is influenced by a gravitational force pointing downwards and it looses

energy by air friction (which is assumed to be proportional to the speed of the ball).

The simulation setup consists of essentially four parts:

1. A (sin(ωt), cos(ωt))-generator to create a real ball instead of a single moving

point,

2. a circuit to generate the y-component of the ball’s movement in the box,

3. a circuit to generate the x-component and, finally,

4. a summing circuit to overlay these signals in a proper manner.

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 26

Generating the ball itself

This is the easiest part of the simulation. A simple sine/cosine-generator with a

rather high output frequency is necessary to create the impression of a ball (circle).

These two values are generated by solving the well known differential equation

ÿ = −αy as shown below:

−rx cos (ωt)�
���
���
��
�
��

HHHH����

?

HHHH����

����HHHH

-

............
............

.............
............

...
............

............
..

............
............

..

S

S
1 k0 = 100

k0 = 100

10V

+1

0.02

0.5

0.50.1 0.1

−rx sin (ωt)

�
��

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 27

Generating the ball itself

At the heart of this circuit is the simple sine/cosine-generator constisting of two

integrators and a summer.

The first thing to note is that the summing junctions of the integrators are used as

the main inputs, thus allowing the use of variable input resistances by means of

coefficient potentiometers. This is necessary to obtain the desired high output

frequency (large ω).

The feedback path from the summer output to the 1-input of the rightmost integrator

is used to ”heat up” the oscillation avoiding excessive decay.

The two Zener-diodes are used to avoid overloading the integrator. They will clip the

output signal once it reaches one machine unit. This, indeed, will result in a

distorted output signal but this distortion is negligible for this application.

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 28

Calculating the y-position

The next step towards a complete simulation is the calculation of the y-position of

the bouncing ball. Drawing y(t) with t as the free variable results in a graph as

shown below:

t

y(t)

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 29

Calculating y(t)

Three terms constitute ÿ: The (constant) gravitation, the damping proportional to ẏ

and the elastic rebound when the ball hits the floor (y < −1) or the ceiling of the

box:

ÿ = −g + dẏ







+ c

m
(|y| + 1) if y < −1

− c

m
(y − 1) if y > 1

From ÿ the velocity ẏ and position y can be easily derived:

ẏ =

T
∫

0

ÿ dt + ẏ0

y =

T
∫

0

ẏ dt + y0

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 30

Computer setup to calculate y(t)

k0 = 10

�
��

�
��
�
��

�
��
b

bb
"

""

b
bb
"

""

b
bb
"

""

-

..
............

............
..

............
............

..

S

+1

-1 +1 -1 +1

0.27 0.52
y0ẏ0

10V
0.5

−y

0.03

g

0.1

k0 = 10

�
��

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 31

Tricks

There are some tricks used in this computer setup:

1. The condition of hitting the floor or the ceiling of the surrounding box is detected

by the two 10V-Zener-diodes instead of a classical backlash setup. This has the

disadvantage that box heights different from ±1 are not covered as would be

possible by using a backlash. The advantage is that two backlashes would

require two amplifiers, two potentiometers and four diodes which are saved this

way.

2. The slower the ball gets, the smaller the acceleration of the elastic rebounds will

be. This is a bit unrealistic and will be partly compensated for by using the

summing junction of the first integrator as the input from the simplified backlash

instead of using a weighted input.

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 32

Calculating the x-position

The calculation of x(t) assumes that the velocity diminishes with time t, eventually

reaching zero (at this point the computer should enter the halt or initial condition

mode).

−1

x(t)

t

+1

Changing the direction of the ball when it hits the left or right wall is a bit tricky as the

following computer setup will show.

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 33

Computer setup to calculate x(t)

0.7

mHHHH���� HHHH����

��
��
@@

HHHH����

-

��
@@

XX

+1
0.05

-1

k0 = 1

+1

-1

k0 = 10

-1

−xm

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 34

Putting everything together

Now having calculated y(t) as well as x(t) all that is left to do is to superimpose

those values with the (sin (ωt) , cos (ωt))-pair generated previously to display a

real ball at a particular position vector (x(t), y(t)):

−x(t)

����H
HHH

-

-

−ry cos(ωt)

−rx sin(ωt)

y

x

−y(t)

����H
HHH

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 35

The final computer setup

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 36

Bouncing ball

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 37

The end

I hope you enjoyed the lecture and maybe you got a bit of the feeling of thinking the

”analog way” as Dr. Giloi once said.

Analog computers are more than just fascinating relics – they are the last

reminescences of a wonderful technology and (way more important) they teach one

to think in a way completely different from the way one with a background in digital

processing is trained to follow.

Thinking the analog way will result in solutions which might never have been thought

of in a conventional digital environment.

Thank you for your interest and your patience.

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 38

Help

As you may have noticed, analog computing is my passion! Therefore I would like to

ask you for help:

• I am trying to save analog computers from scrap whereever I can. If you happen

to know about a system looking for a good home, please let me know. (I am not

afraid of large systems and I would really love to get an RA770 or an RA800(H),

for example! I will pay for all expenses to save the machine from scrap and I will

arrange shipping, etc.)

• I am interested in trivia, documentation, computer setups, sales brochures, etc.

• Please spread the word and help to save these machines from getting lost and

forgotten.

You can reach me always at ulmann@vaxman.de or by mobile phone at

0177/5633531 (in Germany) in case of an emergency. Thank you very much!

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 39

References

[1] AEG Telefunken, ”Demonstrationsbeispiel Nr.5, Ball im Kasten”.

Workshop – Analog Computing 19-APR-2006 ulmann@vaxman.de http://www.vaxman.de 40

